219 research outputs found

    Sensing Technology to Monitor Behavioral and Psychological Symptoms and to Assess Treatment Response in People With Dementia. A Systematic Review

    Get PDF
    Background: The prevalence of dementia is expected to rapidly increase in the next decades, warranting innovative solutions improving diagnostics, monitoring and resource utilization to facilitate smart housing and living in the nursing home. This systematic review presents a synthesis of research on sensing technology to assess behavioral and psychological symptoms and to monitor treatment response in people with dementia. Methods: The literature search included medical peer-reviewed English language publications indexed in Embase, Medline, Cochrane library and Web of Sciences, published up to the 5th of April 2019. Keywords included MESH terms and phrases synonymous with “dementia”, “sensor”, “patient”, “monitoring”, “behavior”, and “therapy”. Studies applying both cross sectional and prospective designs, either as randomized controlled trials, cohort studies, and case-control studies were included. The study was registered in PROSPERO 3rd of May 2019. Results: A total of 1,337 potential publications were identified in the search, of which 34 were included in this review after the systematic exclusion process. Studies were classified according to the type of technology used, as (1) wearable sensors, (2) non-wearable motion sensor technologies, and (3) assistive technologies/smart home technologies. Half of the studies investigated how temporarily dense data on motion can be utilized as a proxy for behavior, indicating high validity of using motion data to monitor behavior such as sleep disturbances, agitation and wandering. Further, up to half of the studies represented proof of concept, acceptability and/or feasibility testing. Overall, the technology was regarded as non-intrusive and well accepted. Conclusions: Targeted clinical application of specific technologies is poised to revolutionize precision care in dementia as these technologies may be used both by patients and caregivers, and at a systems level to provide safe and effective care. To highlight awareness of legal regulations, data risk assessment, and patient and public involvement, we propose a necessary framework for sustainable ethical innovation in healthcare technology. The success of this field will depend on interdisciplinary cooperation and the advance in sustainable ethic innovation.publishedVersio

    Gene Expression Analysis of In Vivo Fluorescent Cells

    Get PDF
    BACKGROUND: The analysis of gene expression for tissue homogenates is of limited value because of the considerable cell heterogeneity in tissues. However, several methods are available to isolate a cell type of interest from a complex tissue, the most reliable one being Laser Microdissection (LMD). Cells may be distinguished by their morphology or by specific antigens, but the obligatory staining often results in RNA degradation. Alternatively, particular cell types can be detected in vivo by expression of fluorescent proteins from cell type-specific promoters. METHODOLOGY/PRINCIPAL FINDINGS: We developed a technique for fixing in vivo fluorescence in brain cells and isolating them by LMD followed by an optimized RNA isolation procedure. RNA isolated from these cells was of equal quality as from unfixed frozen tissue, with clear 28S and 18S rRNA bands of a mass ratio of approximately 2ratio1. We confirmed the specificity of the amplified RNA from the microdissected fluorescent cells as well as its usefulness and reproducibility for microarray hybridization and quantitative real-time PCR (qRT-PCR). CONCLUSIONS/SIGNIFICANCE: Our technique guarantees the isolation of sufficient high quality RNA obtained from specific cell populations of the brain expressing soluble fluorescent marker, which is a critical prerequisite for subsequent gene expression studies by microarray analysis or qRT-PCR

    Sensing Technology to Monitor Behavioral and Psychological Symptoms and to Assess Treatment Response in People With Dementia. A Systematic Review

    No full text
    Background: The prevalence of dementia is expected to rapidly increase in the next decades, warranting innovative solutions improving diagnostics, monitoring and resource utilization to facilitate smart housing and living in the nursing home. This systematic review presents a synthesis of research on sensing technology to assess behavioral and psychological symptoms and to monitor treatment response in people with dementia. Methods: The literature search included medical peer-reviewed English language publications indexed in Embase, Medline, Cochrane library and Web of Sciences, published up to the 5th of April 2019. Keywords included MESH terms and phrases synonymous with “dementia”, “sensor”, “patient”, “monitoring”, “behavior”, and “therapy”. Studies applying both cross sectional and prospective designs, either as randomized controlled trials, cohort studies, and case-control studies were included. The study was registered in PROSPERO 3rd of May 2019. Results: A total of 1,337 potential publications were identified in the search, of which 34 were included in this review after the systematic exclusion process. Studies were classified according to the type of technology used, as (1) wearable sensors, (2) non-wearable motion sensor technologies, and (3) assistive technologies/smart home technologies. Half of the studies investigated how temporarily dense data on motion can be utilized as a proxy for behavior, indicating high validity of using motion data to monitor behavior such as sleep disturbances, agitation and wandering. Further, up to half of the studies represented proof of concept, acceptability and/or feasibility testing. Overall, the technology was regarded as non-intrusive and well accepted. Conclusions: Targeted clinical application of specific technologies is poised to revolutionize precision care in dementia as these technologies may be used both by patients and caregivers, and at a systems level to provide safe and effective care. To highlight awareness of legal regulations, data risk assessment, and patient and public involvement, we propose a necessary framework for sustainable ethical innovation in healthcare technology. The success of this field will depend on interdisciplinary cooperation and the advance in sustainable ethic innovation

    Recurring Planetary Debris Transits and Circumstellar Gas around White Dwarf ZTF J0328-1219

    Full text link
    We present follow-up photometry and spectroscopy of ZTF J0328-1219, strengthening its status as a white dwarf exhibiting transiting planetary debris. Using TESS and Zwicky Transient Facility photometry, along with follow-up high-speed photometry from various observatories, we find evidence for two significant periods of variability at 9.937 and 11.2 hr. We interpret these as most likely the orbital periods of different debris clumps. Changes in the detailed dip structures within the light curves are observed on nightly, weekly, and monthly timescales, reminiscent of the dynamic behavior observed in the first white dwarf discovered to harbor a disintegrating asteroid, WD 1145+017. We fit previously published spectroscopy along with broadband photometry to obtain new atmospheric parameters for the white dwarf, with M∗ = 0.731 ± 0.023 M⊙, Teff = 7630 ± 140 K, and [Ca/He] = -9.55 ± 0.12. With new high-resolution spectroscopy, we detect prominent and narrow Na D absorption features likely of circumstellar origin, with velocities 21.4 ± 1.0 km s-1 blueshifted relative to atmospheric lines. We attribute the periodically modulated photometric signal to dusty effluents from small orbiting bodies such as asteroids or comets, but we are unable to identify the most likely material that is being sublimated, or otherwise ejected, as the environmental temperatures range from roughly 400 to 700 K

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7

    Pharmaceuticals and related drugs

    No full text

    The microbiome of the upper respiratory tract in health and disease

    No full text

    Phosphors Based on Phosphates of NaZr2(PO4)3 and Langbeinite Structural Families

    No full text
    • 

    corecore